AIAS =PrL

AN/ N CSAE0
Systems for Data Management and Data Science

Query Optimization

Prof. Anastasia Ailamaki
Data-Intensive Applications and Systems (DIAS) Lab

‘Man plans, and God laughs”
— Yiddish proverb

Some slides adapted from Andy Pavlo

Gossip Protocols

Consistency protocols

CAP Theorem

Distributed/Decentraliz
ed systems

Today’s topic

Data science software stack

Data Processing
Graph Data Structured
Pregel, GraphLab, Data
X-Streem, Chaos Spark SQL

Batch Data Streaming Data
Map Reduce, Storm, Naiad, Flink, Spark
Dryad, Spark Streaming Google Data Flow

Machine
Learning

Transaction
Management

Query
Execution

Data Storage

Distribute NoSQL DB Distributed
d File Dynamo Messging

Systems Big Table systems
(GFS) Cassandra Kafka

Storage
Hierarchies
& Layouts

Ressource Management & Optimization

Scheduling (Mesos,

Query optimization YARN)

Today’s overview

Query Optimization
How to improve performance
by wisely choosing the order and implementation of the
operators?

AN
N

Outline

Introduction to query optimization

Relational algebra equivalences

Optimizers based on heuristics — INGRES
Optimizers based on heuristics & cost - SYSTEM R

Cost & selectivity estimation
Principle of optimality
System R

Query Optimization

For a given query, find the execution plan with the lowest “cost”.

7Tsname

BNL- [><]T sid=S.sid

WHERE S.
[10b], [1b] AND T.
AND C.

7TT cid

BNL-NC.c,d_T.c,d
[105] [15]

7TC cid T

Oc. cname—’CSlOl’

[1b]|

SELECT S.sname

FROM S,

T, C T'sname

s1d=T.sid

cid=C.cid

cname="CS101’ BN I—'[><]T.cid:C.cid/\C.cnamez’CSlOl’

[105] [1b]

T'S.sname, T .cid C

BNL-><s sig=T.sid

[105] " [15]
s T

Query Optimization

. The part of a DBMS that is the hardest to implement correctly.
— This is (mostly) what you pay for!
. No optimizer truly produces the “optimal” plan

—- Too expensive to consider all plans (NP-complete)!
- Impossible to get the accurate cost of a plan without executing it!

. Optimizers make a huge difference in terms of
- Performance
— Scalability
— Database capabilities

Decisions, decisions...

In what order to execute operations?
— Particularly: relative order of joins

Which implementation is best for each operation?
- E.g., hash joins, nested loop joins, sort-merge joins...

Which access methods to use?
- E.g., scan, use of an index

Suboptimal decisions can have a huge impact! E.g.

— Use of one join algorithm vs another
— Pushing down selections (that make indexes useless)

Input/output of query optimizer

Input: An Abstract Syntax Tree (AST) representing an SQL query

SELECT S.sname FROM Supplier S, Supply U
WHERE S.scity='Seattle' AND S.sstate='WA'

AND S.sno = U.sno AND U.pno = 2
Output: A full physical plan which is translatable to code

(On the fly) T qname

T sShame
Q
N (On the fly)
& 5 O qnityes : WA
b\\o O sscity="Seattle’ rsstate="WA’ A pno=2 | scity="Seattle’ asstate="WA' 1 pno=2 ,%/’
@ %
& ' %
¥ . (Ind ted | %
2 ! ndex nested 100])
Q\ ><] (p) SNO = sno 2
@ sno = sno :
R 5
D /////// \\\\\\\ :
) i
N ’ Supplier Supply

Supplier Supply (File scan) (Index scan) @

AIAS
Classic architecture

Optimizer

sqL Cost =
uery estimates

Logical Physical
Parser Plan Plan

Classic architecture — Task-oriented

SQL Query

Abstract
Logical

_" Phys:cal
C ost P lan
Estimates :

10

Outline

Introduction to query optimization

Relational algebra equivalences

Optimizers based on heuristics — INGRES
Optimizers based on heuristics & cost - SYSTEM R

Cost & selectivity estimation
Principle of optimality
System R

Multi-query optimization

11

Relational Algebra Equivalences

Key concept in optimization: Equivalences

Two relational algebra expressions are said to be equivalent if on
every legal database instance, the two expressions generate the
same set of tuples.

All roads lead to Rome.
But some of them are
more efficient!

12

Relational Algebra Equivalences

» Selections: ¢ p..nc,(R) = 0, ((O'Cn(R))) (Cascade)

Oc, (O-cz (R)) = Og, (O-cl (R)) (Commute)

* Projections: g (R) = Tq, ((nan (R))) (Cascade)

a; is a set of attributesof Rand a; € a;j;qfori=1..n—1

e These equivalences allow us to ‘push’ selections
and projections ahead of joins.

13

Examples ...

Gage:18 & rating>5 (Sai |OFS)
e Gage:18 (Grating>5 (Sailors))

e Grating>5 (Gage:18 (Sailors))

ﬂqe,rating (Sailors) 2 nage (nrating (Sailors)) (??)

7tage,rating (Sailors) e 7tage,rating (nage,rating,sid (S&“OI’S))

14

Another Equivalence

A projection commutes with a selection that only uses attributes
retained by the projection

nage, rating, sid (Gage<18&rating>5 (Sallors))
— c7age<18&rating>5 (nage, rating, sid (Sallors))

15

Equivalences Involving Joins

R(ST) = (RI<S)MXT (Associative)

(R S) = (SXR) (Commutative)

These equivalences allow us to choose different join orders.

16

Mixing Joins with Selections & Projections

Converting selection + cross-product to join
Os.id = Rsig (Sallors X Reserves)

> Sailors DXl 4 g RESEIVES

Selection on just attributes of S commutes with R[><]S
G5 age<ts (Sailors < s g = rsia RESErVeESs)
< (Os.age<18 (SaIIOrS)) <] s sid = rsid RESErVes

CAREFUL!
We can also “push down” projections Not always wise

TUs sname (S&”OI’S N S.sid =R.sid RESEFVES)
— LS sname (nsname,sid(sailors) N S.sid = R.sid nsid(ReserveS))

17

Example — naive approach

S: 16000 tuples = 320 pages o otheme

T: 256000 tuples = 5120 pages WHERE S.sid=T.sid
AND T.cid=C.cid

C: 1600 tUpIES = 32 pages AND C.cname=’'CS101’

25% of courses being taken (T) are ‘cs101’

Tu p l e_by_tu ple Using cross products

takes > 208 years for each tuple ¢ of C on disk do

o for each tuple s of S on disk do
Page by page for each tuple t of T on disk do

takeS 15 hOurS 1f the condition on (s, t, c¢) holds

output s.sname;

18

AIAS
Explanation

Assume relations are stored on an SSD
Each I/O to fetch a page is 0.1ms

— Super-Worst scenario / tuple-by-tuple

Cartesian product of fetching a page for each tuple (1 1/0 per tuple):
#tuples(C) * #tuples(S) * #tuples(T) = 1,600 * 16,000 * 256,000 =
6,553,600,000,000 I/Os. At 0.1ms per I/O =» query takes 20.8 years

- Not-Worst-But-Very-Bad scenario (page by page):

Cartesian product reading pages at a time, not tuples (1 1/O per page)
#pages(C) * #pages(S) * #pages(T) =32 * 320 * 5120 = 52,428,800 1/0s
52,428,800 * 0.1ms = 5,242 s =» query takes 1.5 hours

19

Example — educated approach

S: 16000 tuples = 320 pages o
T: 256000 tuples = 5120 pages WHERE S.
C: 1600 tuples = 32 pages fsname R

BN L'[><|T.cid:C.cid/\ C.cname='CS101’

Use joins instead of

10b 1b
cross product & push [106] [c]
dOWﬂ prOJeC'Uon T'S.sname, T .cid
17 sec I

BNL-><s sig=T.sid

[105] " [15]
s T

sname

T, C
sid=T.sid
cid=C.cid
cname=’'CS101’

20

m
v
r

Example — educated approach (cont’d)

output /O pgs
#pgs
S 50 16000 |320 320
T 50 256000 |5120 0
ST 25 256000 10240 |163840
m(ST) |125 256000 |2048 0
C 50 1600 32 0
STxC |36 64000 |1778 6560
m(STC) |250 64000 |256 0

T sname

BN L'NT.cid:C.cid/\C.cname:’CSlOl’
[105] [15]

T'S.sname, T .cid C

BN I—‘NS.sid:T.sid

[105] " [15]
s T

21

Example — super optimized

S: 16000 tuples = 320 pages —— E;S;fmi

T: 256000 tuples = 5120 pages WHERE 5.sid=T.sid

C: 1600 tuples = 32 pages L e o1
[10b], [1b]

Push down selection and mr i

reorder joins BNL-<c vig_ 7

1 sec! [10b], [1b]

23

AYTANS =P
An example — super optimized (cont’d)

output output output /O pgs

T sname

|
BNL-X<17_sig=5 sid

C 50 1600 32 32 [105] [15]

#tps/pg #tps #pPQgs

m(o(C)) |250 1 1 0 Tras S

T 50 256000 (5120 |0 BNL->%c ci=r.cia
[105] ,\[1b]

CxT 42 64000 |1524 |[Y/,,]*5120 &0

m(CT) |250 64000 (256 |0 . ®

S 50 16000 |320 0 [1b]I

CT™S |42 64000 [1524 8320

m(CTS) |250 64000 (256 |0

24

Simple queries, straightforward plan

Query planning for OLTP Sy —

gueries is easy because A

they are sargable

— It is usually just picking the best index

— Joins are almost always on foreign key
relationships with a small cardinality

— Can be implemented with simple heuristics

We focus on OLAP queries (more interesting)

vd - — >
B S e -
AR " \
s 3) 3
/ KA 3 ’l |
BN -~ A\
iA . o]
SN A o, J N
Ve TR
- A»,,: (=~ ChY
- 1) 3
IS N 4 OO
Ny A 2
" e AT >
i‘k‘ds}“‘ v 7% E!

Pat Selinger
IBM Fellow,
Paradata,
Salesforce

26

Outline

Introduction to query optimization

Relational algebra equivalences

Optimizers based on heuristics — INGRES
Optimizers based on heuristics & cost - SYSTEM R

Cost & selectivity estimation
Principle of optimality

27

Heuristic-based optimization

Define static rules that transform logical
operators to a physical plan

Perform most restrictive selections early

D . .« o Michael Stonebraker,
erform all selections before joins Turing Award 2014

Predicate/Limit/Projection pushdowns

Join ordering based on cardinality

Example: INGRES and Oracle (until mid 1990s)

N2 20 20 2

28

Developed at UC Berkeley. This ultimately led to Ingres Corp.,

Example - INGRES

Sybase, MS SQL Server, Britton-Lee, Wang's PACE.

APPEARS

ARTIST ID |ALBUM ID
FK FK
(ARTIST \\ ALBUM
D v
ID NAME ID NAME
Integer, | VARCHAR(Integer, PK \@IRCL'J*EAR@Z)
PK 32) Q

29

APPEARS

ARTIST

ALBUM

INGRES optimizer

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM ID=ALBUM.ID
AND ALBUM.NAME="Joy's Slag Remix”

ARTIST_ID |ALBUM ID

FK FK

ID NAME

Integer, PK | VARCHAR(32)

ID NAME

Integer, PK | VARCHAR(32) UNIQUE

30

INGRES optimizer

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME
FROM ARTIST. APPEARS. ALBUM SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1
WHERE ARTIS’T ID:APPE:ARS ARTIST ID QL From ALBUM

AND APPEARS.ALBUM_ID=ALBUM.ID WHERE ALBUMNAME="Joy's Slag Remix

AND ALBUM.NAME="Joy's Slag Remix”

: : : : 2
Step #1: Decompose into single-variable queries ~ 3> SELECT ARTIST.NAME

FROM ARTIST, APPEARS, TEMP1
ARTIST ID ALBUM ID WHERE ARTIST.ID=APPEARS.ARTIST_ID
APPEARS = = AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID
FK FK
ARTIST ID NAME
Integer, PK VARCHAR(32)
ALBUM ID NAME
Integer, PK VARCHAR(32) UNIQUE

31

INGRES optimizer

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM Q1 SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1

WHERE ARTIST.ID=APPEARS.ARTIST_ID FROM ALBUM L »
AND APPEARS.ALBUM ID=ALBUM.ID WHERE ALBUM.NAME= Joy's Slag Remix

AND ALBUM.NAME="Joy's Slag Remix”

SELECT APPEARS.ARTIST_ID INTO TEMP2

. . o . o 3
Step #1: Decompose into single-variable queries Q FROM APPEARS. TEMP1

ARTIST ID ALBUM ID WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM ID
APPEARS — —
FK FK
A SELECT ARTIST.NAME
ARTIST ID NAME Q FROM ARTIST, TEMP2
Integer, PK VARCHAR(32) WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID
ALBUM ID NAME
Integer, PK VARCHAR(32) UNIQUE .

INGRES optimizer

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME ALBUM ID
FROM ARTIST, APPEARS, ALBUM Q1 9999
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM _ID=ALBUM.ID
AND ALBUM.NAME="Joy's Slag Remix”

Q3 ARTIST ID
Step #1: Decompose into single-variable queries 123
456

Q4 SELECT ARTIST.NAME

Step #2: Substitute the values from Q1—Q3—Q4 Fiaaiiid i SR Y

NAME
George -

INGRES optimizer

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM _ID=ALBUM.ID
AND ALBUM.NAME="Joy's Slag Remix”

Step #1: Decompose into single-variable queries

Step #2: Substitute the values from Q1-Q3—Q4

ALBUM ID

Q1 9999

03 ARTIST ID
123
456

Q4 SELECT ARTIST.NAME
FROM ARTIST, He=MPR2
WHERE ARTIST.ARTIST_ID=

456

NAME

NAME

George

John

34

We are judging the optimizer based on today’s
database complexity. How about 19757

Advantages:

— Easy to implement and debug.

—> Works reasonably well and is fast for simple queries & small tables.
Disadvantages:

— Doesn’t truly handle joins.

— Join ordering based only on cardinalities.

—> Naive, nearly impossible to generate good plans when
operators have complex interdependencies.

35

Outline

Introduction to query optimization
Relational algebra equivalences
Optimizers based on heuristics — INGRES

Optimizers based on heuristics & cost
Cost & selectivity estimation
Principle of optimality
System R

36

Heuristics + cost-based optimizer

Use static rules to perform initial optimization.

Then use dynamic programming
to determine the best join order for tables.

— Bottom-up planning using divide-and-conquer
— The first cost-based query optimizer

Example: System R, early IBM DB2, most open- source DBMSs

37

A small parenthesis

Cost & selectivity
estimation

Cost Estimation

Generate an estimate of the cost of executing a plan for the
current state of the database.

> Resource utilization (CPU, 1/0O, network)
— Size of intermediate results

—> Choices of algorithms, access methods
— Interactions with other work in DBMS

— Data properties (skew, order, placement)

39

Cost Estimation — reminder

. Estimate cost for each physical operator
— Simplification: Only consider |/O cost, number of pages
- How valid is this?
« Requires specialization to become main-memory-aware
. Examples

- Selection without index, unsorted
— Page-Oriented Nested Loop Join

40

Selection

Selection without index, unsorted

for each record r in R

if (r.age<18) Let’s unveil I/O

add r to result

41

Selection

Selection without index, unsorted

for each record r in R for each page p in R @& |0
if (r.age<18) for each record r in p
add r to result if (r.age<l18)

add r to result
. 1/O Cost: number of read pages
- Here we don’t consider #pages written. Why?
. Cost will change if
- Records are sorted based on the condition attribute
- We can utilize an index to filter out some records
- We need to materialize the output result
. We will also use different physical implementation

42

Page-oriented Nested Loop join

for each record r in R for each page pl in R } /O
for each record s in S for each page p2 in S
if (r.id=s.id) for each record r in pl
add <r,s> to result for each record s 1n pZ2

if (r.id=s.id)
add <r,s> to result

. For each tuple in the outer relation R, we scan the entire inner relation S
- But use per-page loading!

. |/O Cost: #pages of R + #pages of R * #pages of S

- How to choose the outer relation to minimize the cost?
- Choose order of R, S, so that #pages of R < #pages of S
- Order benefits cost if tables are of different size

43

Selectivity estimates

> Required for cost estimation
/\

How large < T
IS the output . ..
P Output of selection is input of another

O-bidI:100 0rati|ng>5 ope rator!

R S

44

Selectivity estimates

Estimating the number of (intermediary) results

SELECT * FROM R WHERE r.age=18

. Necessary to estimate cost of operators, e.g., join
. Crude estimation

1
#Keys(R.age)

. #Records(R Number of distinct
Estimated #results = #Records(R) values
#Keys(R.age)

Selectivity=

Range queries: length of the range/length of the domain
Free if there is an index!
Good estimates when values are uniformly distributed

45

Selectivity estimates

. Estimating the number of (intermediary) results

SELECT * FROM R WHERE r.age=18
. Histograms: Equi-width and Equi-depth
- Higher cost to build and maintain, but better accuracy.

Skew somewhere

N + In[20-29] N Skew in 23
¥
count N
| 3
L T = & k. ~
~ - -
(5] 18 20 30 40 50 60 79 80 90 a 18 20 30 49 650 60~ 70 80 90 100
equi-width histogram equi-depth histogram °

A:ccurate in Very inaccurate
[60-100] in [40-100]

Join cardinality estimates

How large

5|d
s the output \ Required for cost estimation of each join
>

Reorder joins so that records are filtered

/\ as fast as possible!

O bid|:100 O ratilng>5

R S

47

Join cardinality estimates

1

max|[#Keys(R.sid),#Keys(S.sid)]
If unknown, use 10

#Records(R) = #Records(S)
max|[#Keys(R.sid),#Keys(S.sid)]

Selectivity =

Cardinality estimate =

More for cost estimation & statistics in the book. Chapters:
“Evaluation of rel. operators” (CS-300 material)
“Introduction to query optimization”
“A typical relational query optimizer”

48

Outline

Introduction to query optimization
Relational algebra equivalences
Optimizers based on heuristics — INGRES

Optimizers based on heuristics & cost
— Cost & selectivity estimation

— Principle of optimality

— SystemR

49

SYSTEM R Optimizer

IBM SYSTEM R 7\

Seminal project from the 70s
Drastic influence on succeeding DBs!

Too many plans. Use heuristics N
Pat Selinger

to reduce the search space oM Fellons
High-level idea Paradata,

Salesforce

Iterate over the possible plans

Order of operators, physical implementations of operators, access paths
Estimate cost of each plan
Return the cheapest to the user

50

SYSTEM R Optimizer

Step 1: Break query up into blocks and generate the logical operators for
each block.

Reduces complexity of each plan

Block: No nested queries, exactly one SELECT & FROM, and at most one
WHERE, GROUP BY, HAVING

SELECT S.sid, MIN (R.day)
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.hid AND B.color = ‘red’

AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)
GROUP BY S.sid
HAVING COUNT(*)>1

51

SYSTEM R Optimizer

Step 1: Break query up into blocks and generate the logical operators for
each block.

Reduces complexity of each plan

Block: No nested queries, exactly one SELECT & FROM, and at most one
WHERE, GROUP BY, HAVING

Nested Block:
SELECT MAX (S2.rating)

_ FROM Sailors S2
SELECT S.sid, MIN (R.day)

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’
AND S.rating = Reference to Nested Block

GROUP BY S.sid

HAVING COUNT((*)>1

52

SYSTEM R Optimizer

Step 1: Break query up into blocks and detect the logical operators in each
block.

Step 2: For each individual block:

. For each logical operator, consider a set of physical operators &
offered access paths.

. Iteratively construct a “left-deep” tree that minimizes the estimated
amount of work to execute the plan.

- Why left-deep?

X

M X M\M
M’\\ o 0
/\ /3 /N I.\
R S T U R s T U R ST U

Left-deep join plan Bushy join plan Right-deep join plan 53

SYSTEM R Optimizer

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST _ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Joy's Slag Remix”
ORDER BY ARTIST.ID

Step #1: Choose the best access path to each table

ARTIST _ID ALBUM ID
APPEARS EK EK o4
ARTIST ID NAME
Integer, PK VARCHAR(32)
ALBUM ID NAME
Integer, PK VARCHAR(32) UNIQUE

ARTIST: Sequential scan
APPEARS: Sequential scan
ALBUM: Index lookup on name

ARTIST, APPEARS: No
predicate in the WHERE clause
implies table scan

ALBUM: Index would help
(assume it exists)

54

SYSTEM R Optimizer

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST _ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Joy's Slag Remix”
ORDER BY ARTIST.ID

Step #1: Choose the best access path to each table

Step #2: Enumerate all possible join orderings for tables

ARTIST: Sequential scan
APPEARS: Sequential scan
ALBUM: Index lookup on name

All possible join orders
ARTIST <1 APPEARS <t ALBUM
APPEARS <1 ALBUM 1 ARTIST
ALBUM >x1 APPEARS 1 ARTIST

How many are these?
3x2x1

55

SYSTEM R Optimizer

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME ARTIST: Sequential scan
APPEARS: Sequential scan

FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID ALBUM: Index lookup on name
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME="Joy's Slag Remix”
ORDER BY ARTIST.ID

keep cheapest access methods

+

those producing an interesting order*

Step #1: Choose the best access path to each table POS sible join orders?
s . ARTIST <t APPEARS <t ALBUM
Step #2: Enumerate all possible join orderings for tables APPEARS b ALBUM bt ARTIST

Step #3: Determine the join ordering with the lowest cost ALBUM <t APPEARS <1 ARTIST

*tuple ordering as needed by a group-by, an order-by, or a join

56

AXTANS

Join ordering [IEEIETsIRY

with #joins N

Naive: Just try all possible orders
Nx(N—1)«(N—2)..x 3 x2 x1=N!

Principle of optimality: The optimal plan for k joins is produced

by extending the optimal plan(s) for k-1 joins!

To find optimal order of A D<I B DI C X1 D, reuse partial solutions for optimal order
of ADIBDIIC,ADIBID,

ADJICDID, and B> C X D.
Dynamic programming : O(N x 2V~1)

N=10 : 5120 Vs 3.6 Million Still expensive
but feasible

Assume principle of optimality!

57

Principle of optimality — Getting AD<IB <1 C D<ID

A<IB>IDI<IC

Cost 1=70

A<IBr<1C A<iBr<iD AICI D B<iCp>xi D

AB B>iD CD

58

Choose the cheapest path to create Ad<iBr<D, and
consider it fixed for higher levels!

A<1D<Br<1C

Cost 2=100

A<IBr<1C AX<IBD<1D AXIC< D B<iCp>xi D

Ar<iB AC CD

59

Back to our running example...

HashJoin cost=10 ARTISTAPPEARS
SM Join cost=20 ALBUM
NL Join=100

ARTIST
APPEARS

ALBUM ARTIST<APPEARSIMALBUM

ALBUMMAPPEARS

HashJoin cost=10 ARTIST
SM Join cost=20 SELECT ARTIST.NAME
NL Join=100 FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST _ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Joy's Slag Remix”
ORDER BY ARTIST.ID

60

Back to our running example...

HashJoin cost=10 ARTIST<APPEARS

SM-Join-cost=20 ALBUM
NEJein=100

ARTIST
APPEARS

ALBUM ARTIST<APPEARSIMALBUM

ALBUMMAPPEARS
HashJoin cost=10 ARTIST
SM-Join-cost=20 SELECT ARTIST.NAME
NL_Jein=100 FROM ARTIST, APPEARS, ALBUM
\WHERE ARTIST.ID=APPEARS.ARTIST ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Joy's Slag Remix”
ORDER BY ARTIST.ID

61

Back to our running example...

HashJoin cost=10 ARTIST<APPEARS HashJoin cost=35
ALBUM SM Join cost=55
NL Join=80
ARTIST
APPEARS

ARTIST<APPEARSIMALBUM

HashJoin cost=30
SM Join cost=20
ALBUMMAPPEARS NL Join=100

HashJoin cost=10 ARTIST

ALBUM

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Joy's Slag Remix”
ORDER BY ARTIST.ID -

Back to our running example...

HashJoin cost=10 ARTIST<APPEARS HashJom cost= 35

ALBUM
ARTIST

N

APPEARS

ALBUM ARTIST<APPEARSIMALBUM

HashJoin-cost=30
SM Join cost=20
ALBUMBIAPPEARS NE-Join=100

HashJoin cost=10 ARTIST

-

SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
WHERE ARTIST.ID=APPEARS.ARTIST_ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Joy's Slag Remix”
ORDER BY ARTIST.ID 3

Back to our running example...

HashJoin cost=10 ARTIST<APPEARS

ALBUM HashJoin cost=35
ARTIST

N

APPEARS

ALBUM ARTIST<APPEARSIMALBUM

SM Join cost=20

-

ALBUMMAPPEARS

HashJoin cost=10 ARTIST
SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
\WHERE ARTIST.ID=APPEARS.ARTIST ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Joy's Slag Remix”
ORDER BY ARTIST.ID o

Back to our running example...

HashJoin cost=10 ARTIST<APPEARS

ALBUM HashJoin cost=35
SUM=45
ARTIST

N

APPEARS

ALBUM ARTIST<APPEARSIMALBUM

SUM=30

SM Join cost=20

-

ALBUMMAPPEARS

HashJoin cost=10 ARTIST
SELECT ARTIST.NAME
FROM ARTIST, APPEARS, ALBUM
\WHERE ARTIST.ID=APPEARS.ARTIST ID
AND APPEARS.ALBUM_ID=ALBUM.ID
AND ALBUM.NAME=“Joy's Slag Remix”
ORDER BY ARTIST.ID -

Back to our running example...

ARTIST
APPEARS
ALBUM ARTISTI<APPEARSMALBUM
SUM=30
ALBUM<APPEARS
HashJoin cost=10 ARTIST SM Join cost=20

Constructed in parallel:
* Logical plan (join order)
* Physical plan (Jjoin implementation)

66

What did we use?

Logical & Physical statistics

— size of each record, #records, #distinct values in column, #data pages, #pages in
index, ...

Selectivity estimates

— Histograms (or other distribution assumptions)

- Formulas for selectivity estimates: assumption of selectivity independence!
Formulas to estimate 10 costs (possibly also CPU) per operator

— Access methods (index or scan), natural orders (e.g., primary key, ...)

— Order of output data stream

The principle of optimality

67

Principle of optimality Revisited!

. Principle of optimality may lead to suboptimal plans

- E.g., order not considered SELECT ARTIST.NAME
_ Additional cost at the end — FROM ARTIST, APPEARS, ALBUM
. . \WHERE ARTIST.ID=APPEARS.ARTIST ID
avoided by sort merge join! AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME="Joy's Slag Remix”
ORDER BY ARTIST.ID

. Relaxed principle of optimality

- Consider order-by clause! A plan is compared with all other plans
that produce the same order

68

Interesting orders

A tuple order is interesting order if that order is specified in:

Group By clause
Will cause an additional sorting
Order By clause

Choose plans that produce the correct order, e.g.,
Sort-merge join instead of NL join

Later generalized to include any physical properties!

69

Selectivity estimates, revisited

if there is no index, and no histogram or complex predicates
Cannot estimate #Keys(R. age)
When everything else fails, revert to magic

Set #Keys(R.age) = 10

#Records(R) _ #Records(R)
#Keys(R.age) 10

int qgetRandomNumber ()

return Y. // chosen by foir dice roll.
/| quaranteed to be random.

3

Source: https://xkcd.com/221/ 70

https://xkcd.com/221/

Anecdote

“Is Query Optimization a “Solved”

Problem?”

The root of all evil, the Achilles Heel of query optimization, is the
estimation of the size of intermediate results, known as cardinalities.
Everything in cost estimation depends upon how many rows will be
processed, so the entire cost model is predicated upon the cardinality
model. In my experience, the cost model may introduce errors of at
most 30% for a given cardinality, but the cardinality model can quite
easily introduce errors of many orders of magnitude! I'll give a real-
world example in a moment. With such errors, the wonder isn’'t “Why
did the optimizer pick a bad plan?” Rather, the wonder is “Why would
the optimizer ever pick a decent plan?”

71

Summary of System R optimizer

Both heuristics and cost
Efficient and usually derives reasonable plans
Relies on

Principle of optimality

Interesting orders

System R was never commercialized but was hugely influential!

72

Heuristics + cost-based optimizer

Advantages:

— Usually finds a reasonable plan without having to perform an
exhaustive search.

— Order of results also considered!

Disadvantages:

— Depends on heuristics: Left-deep join trees are not always
optimal (particularly for modern hardware)

— Space exploration only considers joins

73

Al/ML for database systems

Al captures non-obvious patterns/topologies
Can help multi-objective optimization
Efficiently explore large design spaces
Adaptive optimization

User workload affinity

But: overhead can overpower benefits
Use case: dynamic query optimization

74

The Shared Query Execution Dilemma

Q1: ... WHERE R.a=S.a and R.b=U.b and R.c=T.c
Q2: ... WHERE R.a=S.a and R.b=U.b and S.d=V.d

[Sioulas SIGMOD21]

Optimization

140
120
100
80
60
40
20

Shared

l

Sharing benefit

Shared

Response Time (sec)

Bateh 0 256 512 768 1024
Heuristics can detect some opportunities fast Number of Queries in Batch
Optimization can choose best opportunities at high cost
Too much and too little optimization hurt performance!

All-or-nothing exploration sacrifices scalability or

RL-enabled workload-conscious sharing

[Sioulas et al.,SIGMOD’21]

Optimize Execute Optimize Execute Optimize Execute
"t f . Overlxof intermediate results is runﬁ\e inffo
Split Ry . HeRldtebased planning 0 missedlRdbFertenities
Episode k Episode k+1 Episode k+2
. Promising Optimize |mp| Execute
/\ y #
m...... v $ U
Sub-optimal *‘
Bk &
Global Plans Executor

Learn more and better sharing opportunities 7

Reading material

. COW Book chapters 13 and 14 or Database System Concepts chapter 16

77

	Default Section
	Slide 1: CS460 Systems for Data Management and Data Science
	Slide 2: Today’s topic
	Slide 3: Today’s overview

	intro
	Slide 4: Outline
	Slide 5: Query Optimization
	Slide 6: Query Optimization
	Slide 7: Decisions, decisions…
	Slide 8: Input/output of query optimizer
	Slide 9: Classic architecture
	Slide 10: Classic architecture – Task-oriented

	rel-algebra-equal
	Slide 11: Outline
	Slide 12: Relational Algebra Equivalences
	Slide 13: Relational Algebra Equivalences
	Slide 14: Examples …
	Slide 15: Another Equivalence
	Slide 16: Equivalences Involving Joins
	Slide 17: Mixing Joins with Selections & Projections
	Slide 18: Example – naïve approach
	Slide 19: Explanation
	Slide 20: Example – educated approach
	Slide 21: Example – educated approach (cont’d)
	Slide 23: Example – super optimized
	Slide 24: An example – super optimized (cont’d)
	Slide 26: Simple queries, straightforward plan

	ingres
	Slide 27: Outline
	Slide 28: Heuristic-based optimization
	Slide 29: Example - INGRES
	Slide 30: INGRES optimizer
	Slide 31: INGRES optimizer
	Slide 32: INGRES optimizer
	Slide 33: INGRES optimizer
	Slide 34: INGRES optimizer
	Slide 35: Heuristic-based optimization

	cost and selectivity estimation
	Slide 36: Outline
	Slide 37: Heuristics + cost-based optimizer
	Slide 38: A small parenthesis
	Slide 39: Cost Estimation
	Slide 40: Cost Estimation – reminder
	Slide 41: Selection
	Slide 42: Selection
	Slide 43: Page-oriented Nested Loop join
	Slide 44: Selectivity estimates
	Slide 45: Selectivity estimates
	Slide 46: Selectivity estimates
	Slide 47: Join cardinality estimates
	Slide 48: Join cardinality estimates

	system-r
	Slide 49: Outline
	Slide 50: SYSTEM R Optimizer
	Slide 51: SYSTEM R Optimizer
	Slide 52: SYSTEM R Optimizer
	Slide 53: SYSTEM R Optimizer
	Slide 54: SYSTEM R Optimizer
	Slide 55: SYSTEM R Optimizer
	Slide 56: SYSTEM R Optimizer
	Slide 57: Join ordering
	Slide 58: Principle of optimality – Getting A⨝B ⨝ C ⨝D
	Slide 59: Principle of optimality – Getting A⨝B⨝D
	Slide 60: Back to our running example…
	Slide 61: Back to our running example…
	Slide 62: Back to our running example…
	Slide 63: Back to our running example…
	Slide 64: Back to our running example…
	Slide 65: Back to our running example…
	Slide 66: Back to our running example…
	Slide 67: What did we use?
	Slide 68: Principle of optimality Revisited!
	Slide 69: Interesting orders
	Slide 70: Selectivity estimates, revisited
	Slide 71: Anecdote
	Slide 72: Summary of System R optimizer
	Slide 73: Heuristics + cost-based optimizer
	Slide 74: AI/ML for database systems
	Slide 75: The Shared Query Execution Dilemma
	Slide 76: RL-enabled workload-conscious sharing
	Slide 77: Reading material

