
CS460
Systems for Data Management and Data Science

Prof. Anastasia Ailamaki

Data-Intensive Applications and Systems (DIAS) Lab

Query Optimization

Some slides adapted from Andy Pavlo

“Man plans, and God laughs”

– Yiddish proverb

Consistency protocols

CAP Theorem

Gossip Protocols

Distributed/Decentraliz

ed systems

Data science software stack

Data Processing

Ressource Management & Optimization

Data Storage

Distribute
d File

Systems
(GFS)

NoSQL DB
Dynamo

Big Table
Cassandra

Distributed
Messging

systems
Kafka

Structured
Data

Spark SQL

Graph Data
Pregel, GraphLab,

X-Streem, Chaos

Machine
Learning

Batch Data
Map Reduce,

Dryad, Spark

Streaming Data
Storm, Naiad, Flink, Spark

Streaming Google Data Flow

Scheduling (Mesos,
YARN)

Query optimization

Storage
Hierarchies

& Layouts

Transaction
Management

Query
Execution

2

Today’s topic

Today’s overview

Query Optimization
How to improve performance

by wisely choosing the order and implementation of the
operators?

3

Outline

Introduction to query optimization

Relational algebra equivalences

Optimizers based on heuristics – INGRES

Optimizers based on heuristics & cost - SYSTEM R
Cost & selectivity estimation

Principle of optimality

System R

4

Query Optimization

For a given query, find the execution plan with the lowest “cost”.

5

SELECT S.sname

FROM S, T, C

WHERE S.sid=T.sid

AND T.cid=C.cid

AND C.cname=’CS101’

Query Optimization

• The part of a DBMS that is the hardest to implement correctly.
– This is (mostly) what you pay for!

• No optimizer truly produces the “optimal” plan
– Too expensive to consider all plans (NP-complete)!

– Impossible to get the accurate cost of a plan without executing it!

• Optimizers make a huge difference in terms of
– Performance

– Scalability

– Database capabilities

6

Decisions, decisions…

• In what order to execute operations?
– Particularly: relative order of joins

• Which implementation is best for each operation?
– E.g., hash joins, nested loop joins, sort-merge joins…

• Which access methods to use?
– E.g., scan, use of an index

• Suboptimal decisions can have a huge impact! E.g.
– Use of one join algorithm vs another

– Pushing down selections (that make indexes useless)

7

Input/output of query optimizer

8

Input: An Abstract Syntax Tree (AST) representing an SQL query
SELECT S.sname FROM Supplier S, Supply U

WHERE S.scity='Seattle' AND S.sstate='WA’

AND S.sno = U.sno AND U.pno = 2

Output: A full physical plan which is translatable to code

Classic architecture

9

SQL

Query

Parser

Optimizer

Logical

Plan

Cost

estimates

AST Physical

Plan

Classic architecture – Task-oriented

10

Outline

Introduction to query optimization

Relational algebra equivalences

Optimizers based on heuristics – INGRES

Optimizers based on heuristics & cost - SYSTEM R
Cost & selectivity estimation

Principle of optimality

System R

Multi-query optimization

11

Relational Algebra Equivalences

Key concept in optimization: Equivalences

Two relational algebra expressions are said to be equivalent if on
every legal database instance, the two expressions generate the
same set of tuples.

All roads lead to Rome.
But some of them are
more efficient!

12

Relational Algebra Equivalences

13

(Commute)

(Cascade)

Examples …

σage=18 & rating>5 (Sailors)

σage=18 (σrating>5 (Sailors))

σrating>5 (σage=18 (Sailors))

πage,rating (Sailors) πage (πrating (Sailors)) (??)

πage,rating (Sailors) πage,rating (πage,rating,sid (Sailors))

14

Another Equivalence

A projection commutes with a selection that only uses attributes
retained by the projection

15

πage, rating, sid (σage<18 & rating>5 (Sailors))

σage<18 & rating>5 (πage, rating, sid (Sailors))

Equivalences Involving Joins

These equivalences allow us to choose different join orders.

16

R ⨝ (S ⨝ T) (R ⨝ S) ⨝ T (Associative)

(R ⨝ S) (S ⨝ R)  (Commutative)

Mixing Joins with Selections & Projections

Converting selection + cross-product to join

Selection on just attributes of S commutes with R S

We can also “push down” projections

17

σS.sid = R.sid (Sailors x Reserves)

Sailors S.sid = R.sid Reserves

σS.age<18 (Sailors S.sid = R.sid Reserves)

(σS.age<18 (Sailors)) S.sid = R.sid Reserves

πS.sname (Sailors S.sid = R.sid Reserves)

πS.sname (πsname,sid(Sailors) S.sid = R.sid πsid(Reserves))

CAREFUL!

Not always wise

Example – naïve approach

S: 16000 tuples = 320 pages
T: 256000 tuples = 5120 pages
C: 1600 tuples = 32 pages
25% of courses being taken (T) are ‘cs101’

Tuple-by-tuple
takes > 20.8 years

Page-by-page
takes 1.5 hours

18

for each tuple c of C on disk do

for each tuple s of S on disk do

for each tuple t of T on disk do

if the condition on (s, t, c) holds

output s.sname;

Using cross products

SELECT S.sname

FROM S, T, C

WHERE S.sid=T.sid

AND T.cid=C.cid

AND C.cname=’CS101’

Explanation

→ Super-Worst scenario / tuple-by-tuple
Cartesian product of fetching a page for each tuple (1 I/O per tuple):

#tuples(C) * #tuples(S) * #tuples(T) = 1,600 * 16,000 * 256,000 =
6,553,600,000,000 I/Os. At 0.1ms per I/O ➔ query takes 20.8 years

→ Not-Worst-But-Very-Bad scenario (page by page):

Cartesian product reading pages at a time, not tuples (1 I/O per page)
#pages(C) * #pages(S) * #pages(T) = 32 * 320 * 5120 = 52,428,800 I/Os

52,428,800 * 0.1ms = 5,242 s ➔ query takes 1.5 hours

19

Assume relations are stored on an SSD

Each I/O to fetch a page is 0.1ms

Example – educated approach

S: 16000 tuples = 320 pages
T: 256000 tuples = 5120 pages
C: 1600 tuples = 32 pages

Use joins instead of
cross product & push
down projection
17 sec

20

SELECT S.sname

FROM S, T, C

WHERE S.sid=T.sid

AND T.cid=C.cid

AND C.cname=’CS101’

Example – educated approach (cont’d)
Node output

#tps/pg

output

#tps

output

#pgs

I/O pgs

S 50 16000 320 320

T 50 256000 5120 0

S⋈T 25 256000 10240 163840

π(ST) 125 256000 2048 0

C 50 1600 32 0

ST ⋈ C 36 64000 1778 6560

π(STC) 250 64000 256 0

21

Example – super optimized

S: 16000 tuples = 320 pages
T: 256000 tuples = 5120 pages
C: 1600 tuples = 32 pages

Push down selection and
reorder joins
1 sec!

23

SELECT S.sname

FROM S, T, C

WHERE S.sid=T.sid

AND T.cid=C.cid

AND C.cname=’CS101’

An example – super optimized (cont’d)

Node output
#tps/pg

output
#tps

output
#pgs

I/O pgs

C 50 1600 32 32

π(σ(C)) 250 1 1 0

T 50 256000 5120 0

C⋈T 42 64000 1524 ⌈1/10⌉*5120

π(CT) 250 64000 256 0

S 50 16000 320 0

CT ⋈ S 42 64000 1524 8320

π(CTS) 250 64000 256 0
24

Simple queries, straightforward plan

Query planning for OLTP
queries is easy because
they are sargable
→ It is usually just picking the best index
→ Joins are almost always on foreign key

relationships with a small cardinality
→ Can be implemented with simple heuristics

We focus on OLAP queries (more interesting)

26

Search Argument

Able

Pat Selinger

IBM Fellow,
Paradata,
Salesforce

Outline

Introduction to query optimization

Relational algebra equivalences

Optimizers based on heuristics – INGRES

Optimizers based on heuristics & cost - SYSTEM R
Cost & selectivity estimation

Principle of optimality

27

Heuristic-based optimization

Define static rules that transform logical
operators to a physical plan

→ Perform most restrictive selections early
→ Perform all selections before joins
→ Predicate/Limit/Projection pushdowns
→ Join ordering based on cardinality

Example: INGRES and Oracle (until mid 1990s)

28

Michael Stonebraker,

Turing Award 2014

Example - INGRES

29

Developed at UC Berkeley. This ultimately led to Ingres Corp.,
Sybase, MS SQL Server, Britton-Lee, Wang's PACE.

ID NAME

Integer,

PK

VARCHAR(

32)

ID NAME

Integer, PK VARCHAR(32)

UNIQUE

ALBUMARTIST

APPEARS

ARTIST_ID ALBUM_ID

FK FK

INGRES optimizer

30

Retrieve the names of artists that appear on Joy's mixtape
SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ID NAME

Integer, PK VARCHAR(32)

ARTIST_ID ALBUM_ID

FK FK

ALBUM

ARTIST

APPEARS

ID NAME

Integer, PK VARCHAR(32) UNIQUE

ID NAME

Integer, PK VARCHAR(32) UNIQUE

INGRES optimizer

31

Step #1: Decompose into single-variable queries

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1

FROM ALBUM

WHERE ALBUM.NAME=“Joy's Slag Remix”

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, TEMP1

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=TEMP1.ALBUM_ID

Q1

Q2

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ID NAME

Integer, PK VARCHAR(32)

ARTIST_ID ALBUM_ID

FK FK

ALBUM

ARTIST

APPEARS

Retrieve the names of artists that appear on Joy's mixtape

INGRES optimizer

32

Step #1: Decompose into single-variable queries

SELECT ALBUM.ID AS ALBUM_ID INTO TEMP1

FROM ALBUM

WHERE ALBUM.NAME=“Joy's Slag Remix”

SELECT APPEARS.ARTIST_ID INTO TEMP2

FROM APPEARS, TEMP1

WHERE APPEARS.ALBUM_ID=TEMP1.ALBUM_ID

Q1

Q4 SELECT ARTIST.NAME

FROM ARTIST, TEMP2

WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ID NAME

Integer, PK VARCHAR(32)

ARTIST_ID ALBUM_ID

FK FK

ALBUM

ARTIST

APPEARS

ID NAME

Integer, PK VARCHAR(32) UNIQUE

Q3

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME

FROM ARTIST, TEMP2

WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

INGRES optimizer

33

ARTIST_ID

123

456

123

NAME

George

Step #1: Decompose into single-variable queries

Step #2: Substitute the values from Q1→Q3→Q4

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ALBUM_ID

9999Q1

Q4

Q3

Retrieve the names of artists that appear on Joy's mixtape

SELECT ARTIST.NAME

FROM ARTIST, TEMP2

WHERE ARTIST.ARTIST_ID=TEMP2.ARTIST_ID

INGRES optimizer

34

ARTIST_ID

123

456

456

NAME

George

Step #1: Decompose into single-variable queries

Step #2: Substitute the values from Q1→Q3→Q4

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ALBUM_ID

9999Q1

Q4

Q3

NAME

John

Retrieve the names of artists that appear on Joy's mixtape

Heuristic-based optimization

Advantages:
→ Easy to implement and debug.
→ Works reasonably well and is fast for simple queries & small tables.

Disadvantages:
→ Doesn’t truly handle joins.
→ Join ordering based only on cardinalities.
→ Naïve, nearly impossible to generate good plans when

operators have complex interdependencies.

35

We are judging the optimizer based on today’s

database complexity. How about 1975?

Outline

Introduction to query optimization

Relational algebra equivalences

Optimizers based on heuristics – INGRES

Optimizers based on heuristics & cost
Cost & selectivity estimation

Principle of optimality

System R

36

Heuristics + cost-based optimizer

Use static rules to perform initial optimization.

Then use dynamic programming
to determine the best join order for tables.

→ Bottom-up planning using divide-and-conquer
→ The first cost-based query optimizer

Example: System R, early IBM DB2, most open- source DBMSs

37

A small parenthesis

Cost & selectivity

estimation

38

Cost Estimation

Generate an estimate of the cost of executing a plan for the
current state of the database.

→ Resource utilization (CPU, I/O, network)
→ Size of intermediate results
→ Choices of algorithms, access methods
→ Interactions with other work in DBMS
→ Data properties (skew, order, placement)

39

Cost Estimation – reminder

• Estimate cost for each physical operator
– Simplification: Only consider I/O cost, number of pages

– How valid is this?

• Requires specialization to become main-memory-aware

• Examples
– Selection without index, unsorted

– Page-Oriented Nested Loop Join

40

Selection

Selection without index, unsorted

41

for each record r in R

if (r.age<18)

add r to result
Let’s unveil I/O

Selection
Selection without index, unsorted

• I/O Cost: number of read pages

– Here we don’t consider #pages written. Why?

• Cost will change if

– Records are sorted based on the condition attribute

– We can utilize an index to filter out some records

– We need to materialize the output result

• We will also use different physical implementation
42

for each page p in R

for each record r in p

if (r.age<18)

add r to result

for each record r in R

if (r.age<18)

add r to result

I/O

Page-oriented Nested Loop join

• For each tuple in the outer relation R, we scan the entire inner relation S

– But use per-page loading!

• I/O Cost: #pages of R + #pages of R * #pages of S

• How to choose the outer relation to minimize the cost?

– Choose order of R, S, so that #pages of R < #pages of S

– Order benefits cost if tables are of different size

43

for each page p1 in R

for each page p2 in S

for each record r in p1

for each record s in p2

if (r.id=s.id)

add <r,s> to result

for each record r in R

for each record s in S

if (r.id=s.id)

add <r,s> to result

I/O}

Selectivity estimates

44

Required for cost estimation

Output of selection is input of another
operator!

How large

is the output

R S

σbid=100 σrating>5

⨝

⨝

T

Selectivity estimates

Estimating the number of (intermediary) results

• Necessary to estimate cost of operators, e.g., join

• Crude estimation

– Selectivity=
1

#𝐾𝑒𝑦𝑠 𝑅.𝑎𝑔𝑒

– Estimated #results =
#𝑅𝑒𝑐𝑜𝑟𝑑𝑠(𝑅)

#𝐾𝑒𝑦𝑠 𝑅.𝑎𝑔𝑒

– Range queries: length of the range/length of the domain

– Free if there is an index!

– Good estimates when values are uniformly distributed

45

SELECT * FROM R WHERE r.age=18

Number of distinct

values

Selectivity estimates

• Estimating the number of (intermediary) results

• Histograms: Equi-width and Equi-depth

– Higher cost to build and maintain, but better accuracy.

SELECT * FROM R WHERE r.age=18

Skew in 23

Skew somewhere

in [20-29]

Very inaccurate

in [40-100]
Accurate in

[60-100]

Join cardinality estimates

47

Required for cost estimation of each join

Reorder joins so that records are filtered
as fast as possible!

πsid

How large

is the output

R S

σbid=100 σrating>5

⨝

⨝

T

Join cardinality estimates

48

Selectivity =
1

max #𝐾𝑒𝑦𝑠 𝑅.𝑠𝑖𝑑 ,#𝐾𝑒𝑦𝑠 𝑆.𝑠𝑖𝑑

Cardinality estimate =
#𝑅𝑒𝑐𝑜𝑟𝑑𝑠 𝑅 ∗ #𝑅𝑒𝑐𝑜𝑟𝑑𝑠 𝑆

max #𝐾𝑒𝑦𝑠 𝑅.𝑠𝑖𝑑 ,#𝐾𝑒𝑦𝑠 𝑆.𝑠𝑖𝑑

More for cost estimation & statistics in the book. Chapters:
“Evaluation of rel. operators” (CS-300 material)

“Introduction to query optimization”

“A typical relational query optimizer”

If unknown, use 10

Outline

Introduction to query optimization

Relational algebra equivalences

Optimizers based on heuristics – INGRES

Optimizers based on heuristics & cost
– Cost & selectivity estimation

– Principle of optimality

– System R

49

SYSTEM R Optimizer

IBM SYSTEM R
Seminal project from the 70s

Drastic influence on succeeding DBs!

High-level idea
Iterate over the possible plans

Order of operators, physical implementations of operators, access paths

Estimate cost of each plan

Return the cheapest to the user

50

Too many plans. Use heuristics

to reduce the search space
Pat Selinger

IBM Fellow,
Paradata,
Salesforce

SYSTEM R Optimizer

Step 1: Break query up into blocks and generate the logical operators for
each block.

Reduces complexity of each plan

Block: No nested queries, exactly one SELECT & FROM, and at most one
WHERE, GROUP BY, HAVING

51

SELECT S.sid, MIN (R.day)

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

AND S.rating = (SELECT MAX (S2.rating) FROM Sailors S2)

GROUP BY S.sid
HAVING COUNT(*)>1

SYSTEM R Optimizer

Step 1: Break query up into blocks and generate the logical operators for
each block.

Reduces complexity of each plan

Block: No nested queries, exactly one SELECT & FROM, and at most one
WHERE, GROUP BY, HAVING

52

SELECT S.sid, MIN (R.day)

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bid = B.bid AND B.color = ‘red’

AND S.rating = Reference to Nested Block

GROUP BY S.sid
HAVING COUNT(*)>1

Nested Block:

SELECT MAX (S2.rating)

FROM Sailors S2

SYSTEM R Optimizer

Step 1: Break query up into blocks and detect the logical operators in each
block.

Step 2: For each individual block:

• For each logical operator, consider a set of physical operators &
offered access paths.

• Iteratively construct a “left-deep” tree that minimizes the estimated
amount of work to execute the plan.

– Why left-deep?

53

SYSTEM R Optimizer

54

Retrieve the names of artists that appear on Joy's mixtape

Q4

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ORDER BY ARTIST.ID

ID NAME

Integer, PK VARCHAR(32)

ARTIST_ID ALBUM_ID

FK FK

ALBUM

ARTIST

APPEARS

ID NAME

Integer, PK VARCHAR(32) UNIQUE

Step #1: Choose the best access path to each table

ARTIST: Sequential scan

APPEARS: Sequential scan

ALBUM: Index lookup on name

ARTIST, APPEARS: No

predicate in the WHERE clause

implies table scan

ALBUM: Index would help

(assume it exists)

SYSTEM R Optimizer

55

All possible join orders

ARTIST ⨝ APPEARS ⨝ ALBUM

APPEARS ⨝ ALBUM ⨝ ARTIST

ALBUM ⨝ APPEARS ⨝ ARTIST

… … …

How many are these?

3 × 2 × 1

Step #2: Enumerate all possible join orderings for tables

Step #1: Choose the best access path to each table

Retrieve the names of artists that appear on Joy's mixtape
SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ORDER BY ARTIST.ID

ARTIST: Sequential scan

APPEARS: Sequential scan

ALBUM: Index lookup on name

SYSTEM R Optimizer

56

possible join orders?
ARTIST ⨝ APPEARS ⨝ ALBUM

APPEARS ⨝ ALBUM ⨝ ARTIST

ALBUM ⨝ APPEARS ⨝ ARTIST

… … …
Step #3: Determine the join ordering with the lowest cost

keep cheapest access methods

+

those producing an interesting order*

*tuple ordering as needed by a group-by, an order-by, or a join

Step #2: Enumerate all possible join orderings for tables

Step #1: Choose the best access path to each table

Retrieve the names of artists that appear on Joy's mixtape
SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ORDER BY ARTIST.ID

ARTIST: Sequential scan

APPEARS: Sequential scan

ALBUM: Index lookup on name

Join ordering

Naïve: Just try all possible orders
𝑁 ∗ 𝑁 − 1 ∗ 𝑁 − 2 …∗ 3 ∗ 2 ∗ 1 = 𝑁!

Principle of optimality: The optimal plan for k joins is produced
by extending the optimal plan(s) for k-1 joins!

To find optimal order of A ⨝ B ⨝ C ⨝ D, reuse partial solutions for optimal order
of A ⨝ B ⨝ C, A ⨝ B ⨝ D,
A ⨝ C ⨝ D, and B ⨝ C ⨝ D.

Dynamic programming : 𝑂(𝑁 × 2𝑁−1)

N=10 : 5120 Vs 3.6 Million

Assume principle of optimality!

57

Still expensive

but feasible

Scales BADLY

with #joins N

Principle of optimality – Getting A⨝B ⨝ C ⨝D

58

A⨝B⨝D⨝C

A⨝B⨝C B⨝C⨝ DA⨝C⨝ DA⨝B⨝D

A⨝B B⨝CA⨝DA⨝C B⨝D C⨝D

A B C D

….

….

Cost 1=70

Principle of optimality – Getting A⨝B⨝D

59

A⨝D⨝B⨝C

A⨝B⨝C B⨝C⨝ DA⨝C⨝ DA⨝B⨝D

A⨝B B⨝CA⨝DA⨝C B⨝D C⨝D

A B C D

….

….

Cost 2=100

Choose the cheapest path to create A⨝B⨝D, and

consider it fixed for higher levels!

Back to our running example…

60

ARTIST

APPEARS

ALBUM

ARTIST⨝APPEARS

ALBUM

ARTIST⨝APPEARS⨝ALBUM

ALBUM⨝APPEARS

ARTIST

…

HashJoin cost=10

SM Join cost=20

NL Join=100

HashJoin cost=10

SM Join cost=20

NL Join=100

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ORDER BY ARTIST.ID

Back to our running example…

61

ARTIST

APPEARS

ALBUM

ARTIST⨝APPEARS

ALBUM

ARTIST⨝APPEARS⨝ALBUM

ALBUM⨝APPEARS

ARTIST

…

HashJoin cost=10

SM Join cost=20

NL Join=100

HashJoin cost=10

SM Join cost=20

NL Join=100

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ORDER BY ARTIST.ID

Back to our running example…

62

ARTIST

APPEARS

ALBUM

ARTIST⨝APPEARS

ALBUM

ARTIST⨝APPEARS⨝ALBUM

ALBUM⨝APPEARS

ARTIST

…

HashJoin cost=10

HashJoin cost=10

HashJoin cost=35

SM Join cost=55

NL Join=80

HashJoin cost=30

SM Join cost=20

NL Join=100

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ORDER BY ARTIST.ID

Back to our running example…

63

ARTIST

APPEARS

ALBUM

ARTIST⨝APPEARS

ALBUM

ARTIST⨝APPEARS⨝ALBUM

ALBUM⨝APPEARS

ARTIST

…

HashJoin cost=10

HashJoin cost=10

HashJoin cost=35

SM Join cost=55

NL Join=80

HashJoin cost=30

SM Join cost=20

NL Join=100

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ORDER BY ARTIST.ID

Back to our running example…

64

ARTIST

APPEARS

ALBUM

ARTIST⨝APPEARS

ALBUM

ARTIST⨝APPEARS⨝ALBUM

ALBUM⨝APPEARS

ARTIST

…

HashJoin cost=10

HashJoin cost=10

HashJoin cost=35

SM Join cost=20

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ORDER BY ARTIST.ID

Back to our running example…

65

ARTIST

APPEARS

ALBUM

ARTIST⨝APPEARS

ALBUM

ARTIST⨝APPEARS⨝ALBUM

ALBUM⨝APPEARS

ARTIST

…

HashJoin cost=10

HashJoin cost=10

HashJoin cost=35

SM Join cost=20

SUM=45

SUM=30

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”

ORDER BY ARTIST.ID

Back to our running example…

66

ARTIST

APPEARS

ALBUM
ARTIST⨝APPEARS⨝ALBUM

ALBUM⨝APPEARS

ARTIST

Constructed in parallel:

• Logical plan (join order)

• Physical plan (join implementation)

HashJoin cost=10 SM Join cost=20

SUM=30

What did we use?

• Logical & Physical statistics
– size of each record, #records, #distinct values in column, #data pages, #pages in

index, …

• Selectivity estimates
– Histograms (or other distribution assumptions)

– Formulas for selectivity estimates: assumption of selectivity independence!

• Formulas to estimate IO costs (possibly also CPU) per operator
– Access methods (index or scan), natural orders (e.g., primary key, …)

– Order of output data stream

• The principle of optimality

67

Principle of optimality Revisited!

• Principle of optimality may lead to suboptimal plans
– E.g., order not considered

– Additional cost at the end –
avoided by sort merge join!

• Relaxed principle of optimality
– Consider order-by clause! A plan is compared with all other plans

that produce the same order

68

SELECT ARTIST.NAME

FROM ARTIST, APPEARS, ALBUM

WHERE ARTIST.ID=APPEARS.ARTIST_ID

AND APPEARS.ALBUM_ID=ALBUM.ID

AND ALBUM.NAME=“Joy's Slag Remix”
ORDER BY ARTIST.ID

Interesting orders

A tuple order is interesting order if that order is specified in:
Group By clause

Order By clause

Choose plans that produce the correct order, e.g.,
Sort-merge join instead of NL join

Later generalized to include any physical properties!

69

Will cause an additional sorting

Selectivity estimates, revisited

if there is no index, and no histogram or complex predicates

Cannot estimate #Keys R. age

When everything else fails, revert to magic
Set #𝐾𝑒𝑦𝑠 𝑅. 𝑎𝑔𝑒 = 10

#𝑅𝑒𝑐𝑜𝑟𝑑𝑠(𝑅)

#𝐾𝑒𝑦𝑠 𝑅.𝑎𝑔𝑒
=

#𝑅𝑒𝑐𝑜𝑟𝑑𝑠(𝑅)

10

70Source: https://xkcd.com/221/

https://xkcd.com/221/

Anecdote

71

“Is Query Optimization a “Solved”

Problem?”

Guy Lohman

The root of all evil, the Achilles Heel of query optimization, is the

estimation of the size of intermediate results, known as cardinalities.

Everything in cost estimation depends upon how many rows will be

processed, so the entire cost model is predicated upon the cardinality

model. In my experience, the cost model may introduce errors of at

most 30% for a given cardinality, but the cardinality model can quite

easily introduce errors of many orders of magnitude! I’ll give a real-

world example in a moment. With such errors, the wonder isn’t “Why

did the optimizer pick a bad plan?” Rather, the wonder is “Why would

the optimizer ever pick a decent plan?”

Summary of System R optimizer

Both heuristics and cost

Efficient and usually derives reasonable plans

Relies on

Principle of optimality

Interesting orders

System R was never commercialized but was hugely influential!

72

Heuristics + cost-based optimizer

Advantages:

→ Usually finds a reasonable plan without having to perform an
exhaustive search.

→ Order of results also considered!

Disadvantages:

→ Depends on heuristics: Left-deep join trees are not always
optimal (particularly for modern hardware)

→ Space exploration only considers joins

73

AI/ML for database systems

• AI captures non-obvious patterns/topologies

• Can help multi-objective optimization

• Efficiently explore large design spaces

• Adaptive optimization

• User workload affinity

• But: overhead can overpower benefits

74Use case: dynamic query optimization

All-or-nothing exploration sacrifices scalability or

performance

⨝

⨝

R S

T ⨝

⨝

R S

V

⨝

U

⨝

U

⨝

⨝

Shared

Shared

The Shared Query Execution Dilemma

Batch

Heuristics can detect some opportunities fast

Optimization can choose best opportunities at high cost

Q1: … WHERE R.a=S.a and R.b=U.b and R.c=T.c

Q2: … WHERE R.a=S.a and R.b=U.b and S.d=V.d

0

20

40

60

80

100

120

140

0 256 512 768 1024

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

Number of Queries in Batch

Sharing benefit

Optimization

Too much and too little optimization hurt performance!

[Sioulas SIGMOD21]

⨝

T

⨝

U

S

⨝

𝑅

⨝

U

⨝

V⨝

T

⨝

U

S

⨝

𝑅𝑘

⨝

U

⨝

V⨝

U

⨝

T

⨝

V

S

⨝

𝑅𝑘+1

⨝

S

⨝

T

⨝

V

U

⨝

𝑅𝑘+3

RL-enabled workload-conscious sharing

76Learn more and better sharing opportunities

Global Plans

Optimize Execute

Split 𝑅𝑘

Optimize Execute

Split 𝑅𝑘+1

Optimize Execute

Split 𝑅𝑘+2

… …

Episode k Episode k+1

Optimize Execute

Executor

Episode k+2

Promising

Sub-optimal

⨝

T

⨝

U

S

⨝

Rk+2

⨝

V

⨝

U

• Overlap of intermediate results is runtime info

• Heuristic-based planning missed opportunities

[Sioulas et al.,SIGMOD’21]

Reading material

• COW Book chapters 13 and 14 or Database System Concepts chapter 16

77

	Default Section
	Slide 1: CS460 Systems for Data Management and Data Science
	Slide 2: Today’s topic
	Slide 3: Today’s overview

	intro
	Slide 4: Outline
	Slide 5: Query Optimization
	Slide 6: Query Optimization
	Slide 7: Decisions, decisions…
	Slide 8: Input/output of query optimizer
	Slide 9: Classic architecture
	Slide 10: Classic architecture – Task-oriented

	rel-algebra-equal
	Slide 11: Outline
	Slide 12: Relational Algebra Equivalences
	Slide 13: Relational Algebra Equivalences
	Slide 14: Examples …
	Slide 15: Another Equivalence
	Slide 16: Equivalences Involving Joins
	Slide 17: Mixing Joins with Selections & Projections
	Slide 18: Example – naïve approach
	Slide 19: Explanation
	Slide 20: Example – educated approach
	Slide 21: Example – educated approach (cont’d)
	Slide 23: Example – super optimized
	Slide 24: An example – super optimized (cont’d)
	Slide 26: Simple queries, straightforward plan

	ingres
	Slide 27: Outline
	Slide 28: Heuristic-based optimization
	Slide 29: Example - INGRES
	Slide 30: INGRES optimizer
	Slide 31: INGRES optimizer
	Slide 32: INGRES optimizer
	Slide 33: INGRES optimizer
	Slide 34: INGRES optimizer
	Slide 35: Heuristic-based optimization

	cost and selectivity estimation
	Slide 36: Outline
	Slide 37: Heuristics + cost-based optimizer
	Slide 38: A small parenthesis
	Slide 39: Cost Estimation
	Slide 40: Cost Estimation – reminder
	Slide 41: Selection
	Slide 42: Selection
	Slide 43: Page-oriented Nested Loop join
	Slide 44: Selectivity estimates
	Slide 45: Selectivity estimates
	Slide 46: Selectivity estimates
	Slide 47: Join cardinality estimates
	Slide 48: Join cardinality estimates

	system-r
	Slide 49: Outline
	Slide 50: SYSTEM R Optimizer
	Slide 51: SYSTEM R Optimizer
	Slide 52: SYSTEM R Optimizer
	Slide 53: SYSTEM R Optimizer
	Slide 54: SYSTEM R Optimizer
	Slide 55: SYSTEM R Optimizer
	Slide 56: SYSTEM R Optimizer
	Slide 57: Join ordering
	Slide 58: Principle of optimality – Getting A⨝B ⨝ C ⨝D
	Slide 59: Principle of optimality – Getting A⨝B⨝D
	Slide 60: Back to our running example…
	Slide 61: Back to our running example…
	Slide 62: Back to our running example…
	Slide 63: Back to our running example…
	Slide 64: Back to our running example…
	Slide 65: Back to our running example…
	Slide 66: Back to our running example…
	Slide 67: What did we use?
	Slide 68: Principle of optimality Revisited!
	Slide 69: Interesting orders
	Slide 70: Selectivity estimates, revisited
	Slide 71: Anecdote
	Slide 72: Summary of System R optimizer
	Slide 73: Heuristics + cost-based optimizer
	Slide 74: AI/ML for database systems
	Slide 75: The Shared Query Execution Dilemma
	Slide 76: RL-enabled workload-conscious sharing
	Slide 77: Reading material

